Conformal Galilei groups, Veronese curves, and Newton-Hooke spacetimes

نویسندگان

  • Christian Duval
  • Peter Horvathy
  • C. DUVAL
  • P. A. HORVÁTHY
چکیده

Finite-dimensional nonrelativistic conformal Lie algebras spanned by polynomial vector fields of Galilei spacetime arise if the dynamical exponent is z = 2/N with N = 1, 2, . . . . Their underlying group structure and matrix representation are constructed (up to a covering) by means of the Veronese map of degree N . Suitable quotients of the conformal Galilei groups provide us with Newton-Hooke nonrelativistic spacetimes with a quantized reduced negative cosmological constant λ = −N . Preprint: CPT-P006-2011

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal and projective symmetries in Newtonian cosmology

Definitions of non-relativistic conformal transformations are considered both in the Newton-Cartan and in the Kaluza-Klein-type Eisenhart/Bargmann geometrical frameworks. The symmetry groups that come into play are exemplified by the cosmological, and also the Newton-Hooke solutions of Newton’s gravitational field equations. It is shown, in particular, that the maximal symmetry group of the sta...

متن کامل

Conformal compactification and cycle-preserving symmetries of spacetimes

The cycle-preserving symmetries for the nine two-dimensional real spaces of constant curvature are collectively obtained within a Cayley–Klein framework. This approach affords a unified and global study of the conformal structure of the three classical Riemannian spaces as well as of the six relativistic and non-relativistic spacetimes (Minkowskian, de Sitter, anti-de Sitter, both Newton–Hooke ...

متن کامل

The relativistic Lie algebra expansion: from Galilei to Poincaré

We extend a Lie algebra expansion method recently introduced for the (2 + 1)dimensional kinematical algebras to the expansions of the (3 + 1)-dimensional Galilei algebra. One of these expansions goes from the (3 + 1)-dimensional Galilei algebra to the Poincaré one; this process introduces a curvature equal to −1/c, where c is the relativistic constant, in the space of worldlines. This expansion...

متن کامل

A new Lie algebra expansion method: Galilei expansions to Poincaré and Newton–Hooke

We modify a Lie algebra expansion method recently introduced for the (2 + 1)dimensional kinematical algebras so as to work for higher dimensions. This new improved and geometrical procedure is applied to expanding the (3 + 1)-dimensional Galilei algebra and leads to its physically meaningful ‘expanded’ neighbours. One expansion gives rise to the Poincaré algebra, introducing a curvature −1/c in...

متن کامل

Non–Relativistic Spacetimes with Cosmological Constant

Recent data on supernovae favor high values of the cosmological constant. Spacetimes with a cosmological constant have non–relativistic kinematics quite different from Galilean kinematics. De Sitter spacetimes, vacuum solutions of Einstein’s equations with a cosmological constant, reduce in the non–relativistic limit to Newton–Hooke spacetimes, which are non–metric homogeneous spacetimes with n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017